Loading...

Home          Courses          Services          About Us          Overview          Contact Us

About iStudy

Empowering learners and educators with a comprehensive platform that bridges the gap between traditional and modern education. iStudy inspires excellence in education and fosters growth for a brighter future.

Follow Us

Shopping cart
The Women
$30.00 x1
Fourth Wing
$50.00 x1
image

Your Cart is empty

Go to Shop
Subtotal:
$160.00

Pandas

shape
shape

Description

Introduction to Pandas Pandas is a Python library used for data manipulation and analysis. Pandas provides a convenient way to analyze and clean data. The Pandas library introduces two new data structures to Python - Series and DataFrame, both of which are built on top of NumPy. What is Pandas Used for?

Pandas is a powerful library generally used for:-

  • Data Cleaning

  • Data Transformation

  • Data Analysis

  • Machine Learning

  • Data Visualization


Why Use Pandas?


Handle Large Data Efficiently
Pandas is designed for handling large datasets. It provides powerful tools that simplify tasks like data filtering, transforming, and merging. It also provides built-in functions to work with formats like CSV, JSON, TXT, Excel, and SQL databases.
Tabular Data Representation
Pandas DataFrames, the primary data structure of Pandas, handle data in tabular format. This allows easy indexing, selecting, replacing, and slicing of data.
Data Cleaning and Preprocessing
Data cleaning and preprocessing are essential steps in the data analysis pipeline, and Pandas provides powerful tools to facilitate these tasks. It has methods for handling missing values, removing duplicates, handling outliers, data normalization, etc.
Time Series Functionality
Pandas contains an extensive set of tools for working with dates, times, and time-indexed data as it was initially developed for financial modeling.
Free and Open-Source
Pandas follows the same principles as Python, allowing you to use and distribute Pandas for free, even for commercial use.

Target Audience

The primary target audience for the pandas library in Python consists of individuals and professionals involved in data analysis, data science, and data manipulation. This includes: Data Analysts and Data Scientists Researchers Business Intelligence Professionals Software Developers Students and Educators

Prerequisite

We have to install Pandas before we can "operate with" it. Additionally, Python 3.5.x or later is needed. Python 3.6, 3.7, or 3.8 is required in order to install it. It contains optional dependencies (like Matplotlib for plotting) and depends on other libraries (like NumPy).

Pandas Introduction

Pandas Installation

Installation Verification

Running First Pandas Program

What is Pandas Used for?

Why Use Pandas?

Import Pandas in Python

Creating a Pandas Series

Labels

Creating Series From a Python Dictionary


Creating a Pandas DataFrame:-

Pandas DataFrame Using Python Dictionary

Pandas DataFrame Using Python List

Pandas DataFrame From a File

Creating an Empty DataFrame


Creating Indexes in Pandas:-

Default Index

Setting Index

Creating a Range Index


Modifying Indexes in Pandas:-

Renaming Index

Resetting Index


Accessing Rows by Index:-

Getting DataFrame Index:-

Creating Array Using Python List

Explicitly Specify Array Elements Data Type

Creating Series From Pandas Array

View Data in a Pandas DataFrame

Pandas head()

Pandas tail()

Get DataFrame Information


Add a New Column to a Pandas DataFrame:-

Add a New Row to a Pandas DataFrame:-

Remove Rows/Columns from a Pandas DataFrame:-

Delete Rows

Delete columns


Rename Labels in a DataFrame:-

Rename Columns

Rename Row Labels


Access Columns of a DataFrame:-

Pandas .loc:-

Indexing Using .loc

Slicing Using .loc

Boolean Indexing With .loc


Pandas .iloc:-

Indexing Using .iloc

Slicing Using .iloc


.loc vs .iloc:-

Select Data Using Indexing and Slicing

Using loc and iloc to Select Data

Select Rows Based on Specific Criteria

query() to Select Data

Select Rows Based on a List of Values

Creating MultiIndex in Pandas

Access Rows With MultiIndex

MultiIndex from Arrays

Reshape Data Using pivot()

Reshape Data Using pivot_table()

Reshape Data Using stack() and unstack()

Use of melt() to Reshape DataFrame

Find Duplicate Entries

Find Duplicates Based on Columns

Remove Duplicate Entries

pivot() syntax

pivot() for Multiple Values

pivot() vs pivot_table()

pivot_table() Syntax

pivot_table() with Multiple Values

pivot_table() With Aggregate Functions

Pivot Table With MultiIndex

Handle Missing Values With pivot_table()

Read CSV Files

read_csv() Syntax

read_csv() With Arguments

Write to CSV Files

to_csv() Syntax

to_csv() With Arguments

Read JSON in Pandas

read_json() Syntax

Write JSON in Pandas

to_json() Syntax

Read Text Using read_fwf()

Read Text Using read_table()

Read Text Using read_csv()


merge() Syntax in Pandas:-

Merge DataFrames Based on Keys:-

Types of Join Operations In merge():-

Left Join

Right Join

Inner Join

Outer Join

Cross Join


Join vs Merge vs Concat:-


Join() Syntax:-

Join DataFrames:-

Types of Join:-

Left Join (Default)

Right Join

Inner Join

Outer Join

Cross Join

concat() Syntax

concat() With Arguments

Concatenation Along Axis 1

Inner Join Vs Outer Join

Concatenation With Keys

Drop Rows With Missing Values

Fill Missing Values

Use Aggregate Functions to Fill Missing Values

Handle Duplicates Values

Rename Column Names to Meaningful Names

Remove Rows Containing Missing Values

Replace Missing Values

Replace Missing Values With Mean, Median and Mode

Replace Values Using Another DataFrame

Convert Data to Correct Format

Handling Mixed Date Formats

Replace Individual Values

Replace Values Based on a Condition

Remove Wrong Values

Using get_dummies() on Pandas Series

Use get_dummies() on a DataFrame Column

Use of drop_first Inside get_dummies()

Use of prefix Inside get_dummies()


Create Categorical Data Type in Pandas :-

Convert Pandas Series to Categorical Series:-

Using the astype() Function

Using the dtype parameter Inside Series()


Access Categories and Codes in Pandas:-

Rename Categories in Pandas:-

Add New Categories in Pandas:-

Remove Categories in Pandas:-

Check if Categorical Variable is Ordered or Not:-


Convert String to DateTime:-

to_datetime() With Default Arguments

to_datetime() With Day First Format

to_datetime() With Custom Format


Get DateTime From Multiple Columns:-

Get Year, Month and Day From DateTime:-

Get Day of Week, Week of Year and Leap Year:-

DateTime Index in Pandas:-

Apply Single Aggregate Function

Apply Multiple Aggregate Functions in Pandas

Apply Different Aggregation Functions

Group by a Single Column in Pandas

Group by a Multiple Column in Pandas

Group With Categorical Data


Filter Data By Labels:-

Filter Data By Values:-

Logical Operators

isin() Method

str Accessor

query() Method

Sort DataFrame in Pandas

Sort Pandas DataFrame by Multiple Columns

Sort Pandas Series

index Sort Pandas DataFrame Using sort_index()

Line Plot For Data Visualization

Scatter Plots For Data Visualization

Bar Graphs For Data Visualization

Histograms For Data Visualization


Convert String to DateTime:-

Pandas Customized Histogram

Multiple Histograms in Pandas